Experimental and modeling studies of an unusual water-filled pore structure with possible mechanistic implications in family 48 cellulases.

نویسندگان

  • Mo Chen
  • Maxim Kostylev
  • Yannick J Bomble
  • Michael F Crowley
  • Michael E Himmel
  • David B Wilson
  • John W Brady
چکیده

Molecular dynamics simulations were used to study the possible catalytic role of an unusual conserved water-filled pore structure in the family 48 cellulase enzyme Cel48A from Thermobifida fusca. It was hypothesized that this pore serves as the pathway for the water molecules consumed in the hydrolysis catalyzed by the enzyme to reach the active site in a continuous stream to participate in the processive reactions. Theoretical mutants of this enzyme were created in which all of the residues lining the pore were made hydrophobic, which had the effect in molecular dynamics simulations of emptying the pore of water molecules and preventing any from passing through the pore on the simulation time scale. Mutants with smaller numbers of substitutions of this nature, which could be created experimentally by site-directed mutagenesis, were also identified from simulations, and these proteins were subsequently produced in Escherichia coli, expressed and purified, but were found to not fold in a manner similar to the wild type protein, preventing the determination of the importance of the water pore for activity. It is possible that the presence of a small vacuum in the pore was responsible for the instability of the mutants. In addition, alternate pathways were observed in the simulations that would allow water molecules to reach the active site of the enzyme, suggesting that the hypothesis that the pore has functional significance might be incorrect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Analysis of the Effect of Pore Structure and Geometry on Petrophysical and Electrical Properties of Tight Media: Random Network Modeling

Several methodologies published in the literature can be used to construct realistic pore networks for simple rocks, whereas in complex pore geometry formations, as formed in tight reservoirs, such a construction still remains a challenge. A basic understanding of pore structure and topology is essential to overcome the challenges associated with the pore scale modeling of tight porous media. A...

متن کامل

Synthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution

Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...

متن کامل

Sequence, structure, and evolution of cellulases in glycoside hydrolase family 48.

Currently, the cost of cellulase enzymes remains a key economic impediment to commercialization of biofuels. Enzymes from glycoside hydrolase family 48 (GH48) are a critical component of numerous natural lignocellulose-degrading systems. Although computational mining of large genomic data sets is a promising new approach for identifying novel cellulolytic activities, current computational metho...

متن کامل

Scale Effects on the Discharge Coefficient of Ogee Spillway with an Arc in Plan and Converging Training Walls

Dam spillways are the structures that lead rightly and safely the outflow downstream, so that the dam integrity can be guaranteed. Many accidents with dams have been caused by an inadequate spillway design or insufficient capacity. To accurately respond the hydraulic spillways, designers use physical modeling for designing this kind of structures. The scale effect in the spillway modeling, as a...

متن کامل

An Irregular Lattice Pore Network Model Construction Algorithm

Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extracting geologically realistic irregular net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 118 9  شماره 

صفحات  -

تاریخ انتشار 2014